Home » Electronics » how do Diodes work

how do Diodes work


A diode is a two-terminal device formed by two doped regions of silicon separated by a pn junction. The most common category of diode, known as the general-purpose diode,is covered.

Other names, such as rectifier diode or signal diode, depend on the particular type of application for which the diode was designed. You will learn how to use a voltage to cause the diode to conduct current in one direction and block in it the other direction. This process is called biasing.

Use a diode in common applications:

  1. Recognize the electrical symbol for a diode and several diode package configurations
  2. Apply forward bias to a diode
  •  Define forward bias and state the required conditions
  • Discuss the effect of forward bias on the depletion region
  • define barrier potential and its effects during forward bias

3. Reverse bias a diode

  •      Define reverse bias and state the required conditions
  • Discuss reverse current and reverse breakdown

The Diode:

As mentioned, a diode  is made from a small piece of semiconductor material, usually silicon, in which half is doped as a p region and half is doped as region with a pn junction and depletion region in between.shematic symbol of diode

The region is called the anode and is connected to a conductive terminal. The is called the cathode and is connected to a second conductive terminal. The basic diode structure and schematic symbol are shown in above figure.


Typical Diode Packages:

Several common physical configuration of through-hole mounted diode are illustrated. The anode (A) and cathode (K) are indicated on a diode in several ways, depending on the type of package. The cathode is usually marked by a hand, a tab, or some other feature. On these packages where one lead is condition to the case, the case is the cathode.

Surface Mount Diode Packages:

Typical diodes packages for surface mounting on a printed circuit board. The SOD and SOT packages have gullwing shaped leads. The SMA package has L-shapes leads that bend under the package. The SOD and SMA types have a band on a end to indicate the cathode. The SOT type is a three terminal package in which there are either one or two diodes. In a single-diode SOT package, Pin 1 is usually the anode and usually pin 3 is the cathode. In a dual-diode SOT package, pin three is the common terminal and can be either the anode or the cathode. Always check the datasheet for the particular diode to verify the pin configurations.

diode packeges

Typical diode packages with terminal identification. The letter K is used for cathode to avoid confusion with certain electrical quantities that are represented by C. Case type numbers are indicated for each diode.

Forward Bias:

The bias a diode,you apply a dc voltage across it. Forward bias is the condition that allows current through the pn  junction. A dc voltage source connected by conductive material (contacts and wire) across a diode in the direction to produce forward bias. This external bias voltage is designed as V BIAS. The resistor limits the forward current to a value that will not damage the diode. Notice that the negative side V BIAS is connected to the n region of the diode and the positive side is connected to theregion.This is one requirement for forward bias. A requirement for forward bias. A second requirement is that the bias voltage V BIAS, must be greater than the barrier potential.

forward bias in diode

A fundamental picture of what happens when a diode is forward-biased. Because like charges repel, the negative side of the bias-voltage source “pushes” the free electrons, which are the majority carriers in the region, toward the pn junction. This flow of free electron is called electron current. The negative side of the source also provides a continuous flow of electrons through the external connection (conductor) and into the region.

The bias-voltage source imparts sufficient energy to the free electrons for them to overcome the barrier potential of the depletion region and move on through into the region, these conduction electrons have lost enough energy to immediate combine with holes in the valence band.

forward biasing in diode

Now, the electrons are in the valence band in the region, similarly because they have lost to much energy overcoming the barrier potential to remain in the conduction band. Since unlike charges attract, the positive side of the bias-voltage source attracts the valance electrons towards the left of the region. The holes in the region provide the medium or “pathway” for these valence electrons to move through the region. The valence electrons move from one hole to the next toward the left. The holes,which are the majority carriers in the region,effectively (not actually )move to the hole current. You can also view the hole current as being created by the flow of valence electrons through the region, with the holes providing the only means for these electrons to flow.

As the electrons flow out of the region through the external connection (conductor) and to the positive side of the bias-voltage source, they leave holes behind the region; at the same time, these electrons becomes conditions electrons in the mental conductor. Recall that the conduction band in a conductor overlaps the valence band so it takes much less energy for an electron to be a free electron in a conductor than in a semiconductor and that metallic conductors do not have holes in their structure. There is a continuous availability of holes effectively moving toward the  pn junction to combine with the continuous steam of electrons as they come across the junction into the pn region.

The Effect of Forward Bias on the Depletion Region:

As more electrons flow into the depletion region,the number of positive ions is reduced. As more holes effectively flow into the depletion on the other side of the pn junction,the number of negative ions is reduced. This reduction in positive and negative ions during forward bias causes the depletion region to narrow as indicated.

effect of forward bias on depletion region

The Effect of the Barrier Potential During Forward Bias:

Recall that the electric field between the positive and negative ions in the depletion region on the either side of the junction created an “energy hill” that prevents free electrons from diffusing across the junction at equilibrium. This is known as the barrier potential.

When forward bias is applied,the free electrons are provided will enough energy from the bias-voltage  source to overcome the barrier potential and effectively “climb the energy hill” and cross the depletion region. the energy that the electrons require in other to pass through the depletion region is equal to the barrier potential. In other words, the electron give up an amount of energy equivalent to the barrier potential when they across the depletion region.This energy loss results in a voltage drop across the pn junction is equal to the barrier potential (0.7 V), as indicated. An additional small voltage drop occurs across the and region due to the internal resistance of the material. For doped semi-conductive material,this resistance,called the dynamic resistance, is very small and can usually be neglected.

Reverse bias:

Reverse bias is the condition that essentially prevents current through the diode.

reverse bias in diode

In figure a dc voltage is source connected across a diode in the direction to produce reverse bias.This external bias voltage is designated as VBIAS  just as it was for forward bias.Notice that the positive side of VBIAS is connected to the n region of the diode and the negative side is connected to P region.Also note that the depletion region is shown much wider than in forward bias or equilibrium.

As illustration of what happens when a diode is reverse biased is shown in figure.reverse biased

Because unlike charges attract,the positive side of the bias voltage source “pulls”the free electrons,which are the majority carriers in the n region,away from the pn junction.As the electrons flow toward the positive side of voltage source,additional positive ions are created.This results in a widening of the depletion region and a depletion of majority carriers.

In the p region,electrons from the negative side of the voltage source enter valence electrons and move from hole to hole toward the depletion region where they create additional negative ions.This results in a widening of the depletion region and a depletion of majority carriers.The flow of  valence electrons can be viewed as holes being pulled toward positive side.

 The initial flow of charge carriers is transitional and lasts for only a very short time after the reverse bias voltage is applied.As the depletion region widens,the availability of majority carriers decreases.As more of the n and p regions that are produced by the majority carriers decreases.As more of the n and p regions become depleted of majority carriers,the electric field between the positive and negative ions increases in strength until the potential across the depletion region equals the bias voltage,VBIAS .At this point ,the transition current essentially ceases for a very small reverse current that can usually be neglected.

Reverse current:

The extremely small current that exists in reverse bias after the transition current dies out is caused by the minority carriers in the n and p regions that are produced by thermally generated electron hole pairs.The small number of free minority electrons in the p region are “pushed” toward the pn junction by the negative bias voltage.When these electrons reach the wide depletion region,they “fall down the energy hill and combine with the minority holes in the n region as valence electrons and flow toward the positive bias voltage,creating a small hole current.

The conduction band in the p region is at a higher energy level than the conduction band in the n region.Therefore,the minority electrons easily pass through the depletion region because they require no additional energy.Reversed current is shown in figure.reverse current in diode

Reverse breakdown:

Normally,the reverse current is so small that it can be neglected.However,if the external reverse bias voltage is increased to a value called the breakdown voltage,the reverse current will drastically increase.

That is what happens.The high reverse bias voltage imparts energy to the free minority electrons so that as they speed through the p region,they collide with atoms with enough energy to knock valence electrons out of orbit and into the conduction band.The newly created conduction electrons are also high in energy and repeat the process.If one electrons knock only two others out of their valence orbit during its travel through p region,the numbers quickly multiply.As these high energy electrons go through the depletion region,they have enough energy to go through the n region as conduction electrons,rather than combining with holes.

The multiplication of conduction electrons just discussed is known as the avalanche effect,and reverse current can increase dramatically if steps are not taken to limit the current.When the reverse current is not limited,the resulting heating will permanently damage the diode.Most diodes are not operated in reverse breakdown,but if the current is limited by adding a series limiting resistor for example ,there is no permanent damage to the diode.

Watch also:

About admin

Leave a Reply

Your email address will not be published. Required fields are marked *



Check Also

npn and pnp Bipolar junction Transistor

What is transistor? A transistor is a semiconductor device used to amplify or switch electronic ...